Algorithms: Graph Representation (Undirected and Unweighted)

What is Graph?

- Graph (denoted by G) consists of a set of vertices (denoted by V) and a set of edges (denoted by E). These set of edges describes how the vertices are connected to each other.
 - ◆ G = (V, E)
 - Number of nodes/vertices are often denoted by n.
 - Number of edges/connections are often denoted by m.
- Examples of vertices: cities, houses, objects, computers etc.
- → Examples of **edges**: roads, cables, pipes, etc.
- Examples of graphs: Social networks where peoples are nodes and connections between them are edges.

- → Edges can be of different types
 - Directed edge
 - Undirected edge
 - Weighted edge
 - Unweighted edge

Why study Graph?

- Lots of algorithmic problems are related to graphs.
- If some problems are converted to a graph problem, they become easy to solve.
- → Some Popular graph problems are:
 - Shortest Path Problems
 - Traversing problem
 - Maximum Network flow problem.
 - Travelling salesman problem

TYPES OF GRAPHS

RANIT DEBNATH AKASH 4

Graph Representation

- There are different ways to represent a graph. We will see
 - Adjacency Matrix
 - Adjacency List
 - Edge List

Adjacency Matrix (undirected)

	1	2	3	4
1	0	1	1	1
2	1	0	0	1
3	1	0	0	1
4	1	0	1	0

Data Structure to Use: (n * n) Matrix. Example: int adj [n][n];

Adjacency List (undirected)

Data Structure to Use: 2D vector or array of linked list.

Example: vector<int> adj [n]; vector< vector<int> > adj;

Suggested Reading

- → Algorithm Design by Jon Kleinberg, Eva Tardos
 - Chapter 3
 - Section: 3.1